Search results for "robin boundary condition"

showing 10 items of 24 documents

A boundary min-max principle as a tool for boundary element formulations

1991

Abstract A min-max principle for elastic solids, expressed in terms of the unknown boundary displacements and tractions, is presented. It is shown that its Euler-Lagrange equations coincide with the classical boundary integral equations for displacements and for tractions. This principle constitutes a suitable starting point for a symmetric sign-definite formulation of the boundary element method.

Applied MathematicsMathematical analysisGeneral EngineeringMixed boundary conditionSingular boundary methodBoundary knot methodRobin boundary conditionComputational MathematicsFree boundary problemBoundary value problemCalculus of variationsBoundary element methodAnalysisMathematicsEngineering Analysis with Boundary Elements
researchProduct

Multiplicity of solutions for two-point boundary value problems with asymptotically asymmetric nonlinearities

1996

Applied MathematicsMathematical analysisMixed boundary conditionSingular boundary methodBoundary knot methodRobin boundary conditionsymbols.namesakeDirichlet boundary conditionFree boundary problemNeumann boundary conditionsymbolsBoundary value problemAnalysisMathematicsNonlinear Analysis: Theory, Methods & Applications
researchProduct

Porous medium equation with absorption and a nonlinear boundary condition

2002

where is a bounded domain with smooth boundary, @=@ is the outer normal derivative, m ? 1; p; and q are positive parameters and u0 is in L∞( ). Problems of this form arise in mathematical models in a number of areas of science, for instance, in models for gas or :uid :ow in porous media [3] and for the spread of certain biological populations [13]. In the semilinear case (that is for m=1), there is an extensive literature about global existence and blow-up results for this type of problems, see among others, [5,9,16] and the literature therein. For the degenerate case (that is for m = 1), with a nonlinear boundary condition, local existence and uniqueness of weak solutions which are limit o…

Applied MathematicsMathematical analysisNeumann boundary conditionFree boundary problemNo-slip conditionBoundary (topology)UniquenessBoundary value problemAnalysisRobin boundary conditionPoincaré–Steklov operatorMathematicsNonlinear Analysis: Theory, Methods & Applications
researchProduct

Existence and Regularity for a Class of Nonlinear Hyperbolic Boundary Value Problems

2002

AbstractThe regularity of the solution of the telegraph system with nonlinear monotone boundary conditions is investigated by two methods. The first one is based on D'Alembert-type representation formulae for the solution. In the second method the telegraph system is reduced to a linear Cauchy problem with a locally Lipschitzian functional perturbation; then regularity results are established by appealing to the theory of linear semigroups.

Cauchy problemtelegraph systemApplied MathematicsMathematical analysisD'Alembert formulaeMixed boundary conditionRobin boundary conditionNonlinear systemhigher regularitynonlinear boundary conditionsFree boundary problemNeumann boundary conditionsemigroup approachApplied mathematicsCauchy boundary conditionBoundary value problemAnalysisMathematicsJournal of Mathematical Analysis and Applications
researchProduct

A two-phase problem with Robin conditions on the free boundary

2020

We study for the first time a two-phase free boundary problem in which the solution satisfies a Robin boundary condition. We consider the case in which the solution is continuous across the free boundary and we prove an existence and a regularity result for minimizers of the associated variational problem. Finally, in the appendix, we give an example of a class of Steiner symmetric minimizers. peerReviewed

Class (set theory)General MathematicsBoundary (topology)variaatiolaskentaRobin boundary conditionsPhase problemRobin boundary condition01 natural sciencesFree boundary problemsRegularityMathematics - Analysis of PDEsFOS: MathematicsFree boundary problemApplied mathematics0101 mathematicsMathematicsosittaisdifferentiaaliyhtälöt010102 general mathematicsFree boundary problemFree boundary problems; Regularity; Robin boundary conditions; Two-phasematemaattinen optimointi16. Peace & justiceRobin boundary condition010101 applied mathematicsTwo-phaseAnalysis of PDEs (math.AP)
researchProduct

Classification and non-existence results for weak solutions to quasilinear elliptic equations with Neumann or Robin boundary conditions

2021

Abstract We classify positive solutions to a class of quasilinear equations with Neumann or Robin boundary conditions in convex domains. Our main tool is an integral formula involving the trace of some relevant quantities for the problem. Under a suitable condition on the nonlinearity, a relevant consequence of our results is that we can extend to weak solutions a celebrated result obtained for stable solutions by Casten and Holland and by Matano.

Class (set theory)Trace (linear algebra)010102 general mathematicsRegular polygon01 natural sciencesRobin boundary conditionNon-existenceNonlinear systemClassification of solutionsMathematics - Analysis of PDEsSettore MAT/05 - Analisi Matematica0103 physical sciencesQuasilinear anisotropic elliptic equationsFOS: MathematicsLiouville-type theoremApplied mathematics010307 mathematical physicsIntegral formula0101 mathematicsAnalysisMathematicsAnalysis of PDEs (math.AP)
researchProduct

On Boundary Value Problems for ϕ-Laplacian on the Semi-Infinite Interval

2017

The Dirichlet problem and the problem with functional boundary condition for ϕ-Laplacian on the semi-infinite interval are studied as well as solutions between the lower and upper functions.

Dirichlet problem010102 general mathematicsMathematical analysislower and upper functionsMixed boundary conditionMathematics::Spectral Theory01 natural sciencesRobin boundary conditionElliptic boundary value problemϕ-Laplacian010101 applied mathematicssymbols.namesakeModeling and SimulationDirichlet boundary conditionboundary value problemFree boundary problemsymbolsNeumann boundary conditionQA1-939Boundary value problem0101 mathematicsAnalysisMathematicsMathematicsMathematical Modelling and Analysis
researchProduct

Continuous spectrum for a two phase eigenvalue problem with an indefinite and unbounded potential

2020

Abstract We consider a two phase eigenvalue problem driven by the ( p , q ) -Laplacian plus an indefinite and unbounded potential, and Robin boundary condition. Using a modification of the Nehari manifold method, we show that there exists a nontrivial open interval I ⊆ R such that every λ ∈ I is an eigenvalue with positive eigenfunctions. When we impose additional regularity conditions on the potential function and the boundary coefficient, we show that we have smooth eigenfunctions.

Indefinite unbounded potentialPure mathematicsNehari manifoldApplied Mathematics010102 general mathematicsContinuous spectrumBoundary (topology)Function (mathematics)Robin boundary conditionMathematics::Spectral TheoryEigenfunction01 natural sciences(pq)-LaplacianRobin boundary condition010101 applied mathematicsSettore MAT/05 - Analisi MatematicaLagrange multiplier rule0101 mathematicsSobolev embedding theoremNehari manifoldLaplace operatorAnalysisEigenvalues and eigenvectorsMathematicsJournal of Differential Equations
researchProduct

Nonlocal Third Order Boundary Value Problems with Solutions that Change Sign

2014

We investigate the existence and the number of solutions for a third order boundary value problem with nonlocal boundary conditions in connection with the oscillatory behavior of solutions. The combination of the shooting method and scaling method is used in the proofs of our main results. Examples are included to illustrate the results.

Mathematical analysisestimation of the number of solutionsMixed boundary conditionSingular boundary methodBoundary knot methodRobin boundary conditionnonlocal boundary conditionsBoundary conditions in CFDShooting methodModeling and SimulationQA1-939nonlinear boundary value problemsBoundary value problemMathematicsAnalysisSign (mathematics)MathematicsMathematical Modelling and Analysis
researchProduct

Nonlinear Robin problems with unilateral constraints and dependence on the gradient

2018

We consider a nonlinear Robin problem driven by the p-Laplacian, with unilateral constraints and a reaction term depending also on the gradient (convection term). Using a topological approach based on fixed point theory (the Leray-Schauder alternative principle) and approximating the original problem using the Moreau-Yosida approximations of the subdifferential term, we prove the existence of a smooth solution.

Mathematics::Functional Analysisfixed pointSettore MAT/05 - Analisi Matematicalcsh:Mathematicsp-LaplacianMathematics::Analysis of PDEsnonlinear regularityconvection termRobin boundary conditionlcsh:QA1-939maximal monotone mapsubdifferential termElectronic Journal of Differential Equations
researchProduct